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Abstract. Periodic solutionsin the neighborhood of the Lagrangian Sable Equilibrium Points
for the Elliptic Planar Restricted Three-Body problem are developed by a convergent method
of successive approximations.

Keywords. Three-Body, Restricted, Elliptic, Periodic, Orbits
1. INTRODUCTION

Motion in the vicinity of the Earth-Moon system is particularly important for two
reasons. space exploration missions to the Moon and parking orbits in the vicinity of this
system, for observation purposes and space surveillance. The present problem corresponds to
the actual determination of initial conditions leading to periodic solutions in the vicinity of the
equilateral equilibrium points of the above system. The éliptic restricted problem of three
bodies, and the stability properties of the Lagrangian solutions, was studied in details by
Giacaglia and Szebehely (1969). A convergent method of obtaining the characteristic
exponents at L, and Ls, in the dliptic case, was presented by Giacaglia (1971), who also
dedicated severa papers to the resonace cases (Giacaglia 1968; Giacaglia, 1969; Giacaglia and
Franca, 1970; Giacaglia and Nacozy, 1970) The élliptic case has received little attention,
although for large eccentricity of the primaries, should give important informations about the
evolution of bodies gravitating in the field of disrupting binary systems. Recent important work
on the restricted problem, have shown this lack of interest. In a recent paper, Winter and
Murray (1997) have integrated periodic symmetric librations associated with the 1:n
resonances for n = 2,3,4,5. They also discuss the existence and properties of asymmetric
librations for large values of n. Chaotic behavior of resonant orbits about the triangular
equilibrium points was observed by numerical integration. It may be interesting to see the
influence of the eccentricity of the primaries in such behavior. Laskar and Robutel (1995)
presented the notion that has lately been introduced about the chaotic behavior of the solar
system, established by numerical integration. Their work gives a new way of expanding the
Hamiltonian of the planetary system, putting in evidence the ratios of al the semi-magjor axis.
The applicability of Arnold and Kolmogorov Theorems is also given attention. In the context
of their work, the important point is the chaotic behavior, athough extensive numerical
integrations of the restricted problem by Broucke(1971), Giacaglia and Nacozy (1970),
Giacaglia (1968) and more recently by Ragos et a. (1997), have not demonstrated such
behavior. Robutel (1995) uses a computer algebraic manipulator to expand the Hamiltonian of
the three-body problem and uses the results to demonstrate the existence of quasi-periodic
orbits, as predicted by Arnold Theorem. Boundedness of the librations about the triangular
points is obtained by an analytical procedure which eliminates fast variables by Hagel (1996),
concluding with the comparison and agreement with numerical integration. Chaotic behavior is
not put in evidence, for orbits in the vicinity of the 1:2 resonance. An interesting analysis is



performed by Celletti and Ferrara (1996) showing the stability of the restricted problem
configuration in the special case Sun-Ceres-Jupiter for a very long time, comparable with the
age of the solar system. Except for a few mass ratios, Ishwar (1997) demonstrates the stability
of L, even in the case of a small oblateness of one of the primaries and of the infinitesimal
body. Again, it might be of interest to examine the influence of the eccentricity of the primaries
in the above results. Similar studies have been carried out by Subba Rao and Sharma (1997).
Thakur ans Singh (1997) andyze a different generalization of the restricted problem,
introducing radiation of one of the primaries and oblateness of the other. They analyze the
stability of the triangular points in the presence of resonances 1:2 and 1:3. Instability is shown
in the 1:2 case, while in the 1:3 case it depends on the radiation and oblateness parameters.
Nothing is mentioned about the influence of eccentricity. If the eccentricity should change due
to presence of radiation, oblateness, tides and other forces, over along period the influence on
stability may prove to be quite important. An extreme case of eccentricity is considered by
Broucke (1971) and Martinez Alfaro and Orellana (1997).

2. EQUATIONSOF THE PROBLEM

For the problem of the motion of an infinitesimal body in the gravitational field of two large
masses in relative keplerian elliptic motion, a method for the determination of characteristic
exponents has been proposed by this author (Giacaglia, 1971). Periodic oscillations about the
triangular equilibrium points may also be developed by this method. In the paper referred
above, it has been shown that the equations of motion in the vicinity of the Lagrangean points
Lsand Ls, in the éliptic restricted problem of three bodies, may be written as

Z=Az+edz (2.1
where

2=(2.2,2,2,), A=diag(p,.0,.0::0.), P; =A; —€0K;,

A=A, =[-(1+9)/2, A==\, =/~ (1-15)/2 (imaginary)

s=1-27u(l- u),e0 =1-(1-€?)™"2, K,.are given by Egs.40in Giacaglia (1971)
K, ==Ky, Ky ==K, @ = {CD”}, ®, = (09, - cost(1+ecost) K|

<CD”> =0, z=dz/dt, t =true anomalyof the primaries

and where

(F(v) =TIi£nm?1J’0TF(t) dt, @,(t+2m)=@(t), P =27 is the period

Defining a =3/4, B =3J3(2u-1)/4 and y = 9/4, the original equations for the linearized
problem are

& =2n'=Fa&+pBn) (2.2)
n"-2& =FBE&+yn)

With the new varigbles {, =¢, {, =n,¢6'={;,6'={,,n"={,, system (2.2) takes the form

{'=AT +e D7 (2.3)



where

BD 0O 1 OH BD 0O O OH
A= 00 ___cosf [0 0 O or & = cosf
B 0 1+¢& cosf B O OD’ “1+¢ cosf
% y -2 Oﬁ % y 0 oﬁ

The characteristic rootsof A" are A, = -A , = J-@+9)2, A,==A,= J-@-9)/2, with

S=.1-27u (1- ). They are pureimaginary if 27 u(u-1)<1i.e <y, =0,03852.--
They aredifferent unless S=0,i. e., 4 = U, . They are commensurable whenever
u(u-1) = 4n’m?(n? + m?)/27 with n, m natural numbers. We exclude the above singular

cases. Thereexists C, |C| # 0, such that C'A'C=A :diag(}\ i). For instance, C,, =1,
Av-a _B-22,
C2k 2
/3’+2}\ AL
where N =48° —(55/4—8}\ A,)B2+(4514-122 A ) and D = (B 2~ 3)B >-9). Now,
D=0iff 3°=30r90 pu>land N=0iff B°=3 0 p>1or B?=23/160 u > ,.

. Ca =A . Cy =Cyd k= (1234). Inthiscase, [T/ = N/D
V

Let =Cz, 7=CA"Cz-—£95" ik c7 or, defining A =CA'C, K =CIK'C, we
1+ & cosf
obtain the equation z':Az-ﬂK z=Az+e Dz
1+ & cosf
Let :iJ’ZIT—COSf df :1 - 1 = —15 —§g3 -
210 1+ ¢ cosf £ 1-¢2 2

Define 0 ={0}, &, =0y +0K 5, A={A}, A, =Ai—ea K,5,, p, = ,~€ 0K,
The final form of the equations is given by Eq (2.1) above, with associated definitions. With
the proposed method, to any order of approximation, one gets divisors (}\ —A k)2 +02,
¢=1,2,---, and parametric instability with respect to p occurs when A=A =i /. The

following cases are possible

p i =t k=3 A, =A,=+i ~ which hasbeen excluded
)j:2,k:4 - A=A =% EWIC as been exclu
2) ) 27u(1—u):1—%(f2—2),zszif0sus1
1y 27u(i-p)=1-2(2-¢?), ¢=1 - p=01 0 - |y|<1
3 1 2 _[09714
= N - =_ =+ — = = - =
) (=1 - 27u@l-p) n 5t %3’0286<u0,z 2 - u=01

\/5[0

1
[ =2 - u==+ none<pu,, £{>2 - complex
) H=ot %)2113 Ho H p



In the interval [0, ,], parametric instability occurs only at u~ =0,0286, a value not
corresponding to the earth-moon system, where p = 0.0123.

3. CONSTRUCTION OF PERIODIC SOLUTIONS

It is proposed here to construct periodic solutions of Eq. (2.1) by a convergent method
of approximation. This method produces a contraction mapping in the Banach space of all
periodic functions with minimum period P'. If such periodic solution exists, one may expect its
period to be P' = mP, m# 0, integer, positive. Consider Eq.(2.1) written in the form

z=Bz+¢eU z (3.1
where €U =e®d+ A-B and B =diag(it,,iT,,...,iT,) . One has to assume that
p; =it; +O(g) =p;(¢), T1; =k;/m, (3.2

where k;, m, are integers, relative primes, m; >0 or m =1 and k; =0, with
P'=mP, m=mmmm,.
Successive approximations will produce a periodic solution of a system
y=By+eUy—-ce® f(a;1;p;€) (3.3)

where f =(f,,f,,f;,f,), a=(a,,a,0,0,) isaconsant vector,t =(t,,1,,T,,T,) ad
P=(P;,P,,Ps,P,)- Such solution is a periodic solution of Eq.(2.1) if it is possible to choose a
and/or p such that

fi(o;T;p5€)=0 (34)
can be satisfied for j=1, 2, 3, 4. Vector f (a;t;p;€) is obtained by an averaging process

necessary to avoid secular terms in the method of successive approximations. The linear non
singular transformation

z=¢e"'u (3.5)
reduces system (3.1) to

u=¢eVu (3.6)
where

V=e?Uce® =V(te) (3.7)

Obviously, since T; arerational numbers, matrix V is periodic with period P'=2mmm,mm,.
In this case, or for any function F(t) = F(t + P'), integrablein (O,P"), it follows that

M, F(t) = (F(t)) = % J’OP#(t) dt (3.8)

which is the constant term of Fourier series for F(t). For the integral of a function G(t) such
that (G(t)) = 0, we shall indicate the unique primitive function

H(t) = [G(t) dt (3.9)



such that M{H(t)=0, which is periodic of period P' and absolutely continuous, provided G(t) is
at least L-integrable in (0,P'). It can be shown (Cesari, 1963), under these circumstances, that

HO) = ], (6] (3.10)

for some constant K independent of G(t). It is also verified that MF (t) < max|(F (t)| and
|(1 = M)F(t)| =|F(t) - MF (t)| <2max|F(t)|. These properties are necessary to show the
convergence of the method to be used (Cesari, 1963, p. 125). We shall be using M in place of
Mt with no danger of misunderstanding. The method of successive approximations is as
follows. Consider Eq.(3.6) and define the following approximations

u® =q,u™m =y® +£J’(I —MV (t,e)u™ D (t) dt (3.11)
for m=1,2,3,.... It can be shown (Hale, 1963) that if |af<r, O<r <R, there exists an
€,,0<g, <g,, suchthat for al |e| <€, , functions u™ (t) are periodic with period P', mean

vaue Mu™ =a and ||u‘m) ||s R. Also, u™(t) converges uniformly in [0, P'] as m - «

to an absolutely continuous function u(t) which is periodic with period P,
Mu(t) = a, |u(t)[| <R and u(t) satisfiestheintegral equation

u=a +£J’(I -M)V(t,g) u(t) dt (3.12)
and, therefore, the differential equation
u=eV(t,e)u-& M[V(t,e)u(t)] =eV(t,e)u-c f (a;T;p;€) (3.13)

Thus, Eg. (3.12) isasolution (periodic, with period P) of Eq. (3.6) if and only if

f(a;t;p;e)=0 (3.14)
for some vectors a and/or 1. The convergence of the process is established as follows.
Consider Eq.(3.6) and suppose that the conditions
Vtu@®)| = L, [VE)ut) -V Eeve)| < Ljut) —v(t)| are satisfied for all

t, |gf <€, |u(t)|and|v(t)|< R. Consider the sequence defined by Eq.(12), given
R L,g, and if O<r <R, |a]<r.If Sisthe space of al vector periodic functions g(t)
with period T=2m/ w, continuousin (—co, +0) with norm given by Ng = max | g(t)| for al t,
consider the operator Og =a +gJ’(I -M)V(r)g(r)dr andlet S* betheset of dl g(t) O S

defined by S ={g 0 S, Mg= a, Ng < R}. Then one has the mapping O:S* [7 S. The
following conditions are also satisfied

N(Og) < [af +|¢| KT‘1J’OT||(I =MV (r)g(r)[dT <|a|+2eKT" J’0T|[\/(r)g(r)||dr < o]+ 2K L

so that one has N(Og)s<r+(R-r)=R for |¢g<g=min{g, (R-r)/2KL} . Also,
M(Og) =a, so that O:S* 0 S* for & €,. Given g1 S*, it follows that
N(Og-0Oh) <2e|lKLN(g-h) <N(g-h)/2, for |f<e, =min{g1/4K] . Therefore
O:S*[J S* is a contraction mapping. Space S* is obvioudy complete, so that by Banach's
fixed point theorem (Hale, 1963, p. 108), there is a unique element of S*, say y(t)[J S*, such



that Oy=y and N(y™-y) -0 a m- o. Also Oy=y implies that
yt)=a +gJ’(I -M)V(r) y(r) dr so that y(t) is absolutely continuous and
y=¢eVWy +eD, D =M(Vy). The solution of the original system is established by using the
inverse transformation

u=e>®y (3.15)

The successive approximations for system (3.3) aregiven by y© =e®'a and, in general,

y(™ = gBly@ 4 ¢ eBtJ’(I -M)V(r,e) e ®Ty™ (1) dr
—eBty© +£_I(I ~M) eBt0 U y™I(r)dr (3.16)

=eBly©® +J’(| -M) eB“‘”[s o(1;6) +A —B] y™ (1) dr
The method converges to a function y(t) satisfying the integral equation
y(t) =e®'a +J’(I -M) eB“‘T)[e d(1,€) +A —B] y(r) dr (3.17)

or the differential equation
y=By+e® (I -M)[e® (e ®+A-B) y] =
:By+(s<D+A—B)y—eBtM[e‘Bt(sCD+A -B) y] (3.18)
=By+eU vy-ce® f(a;1;p;:€)
which is Eq.(3.3), with the definition

et (a;T;p8) = M[e® (e + A= B) y(t)] :% J'Op'e-Bt[ ed(M) + A-B) Jy®)dt  (3.19)

For the solution to be possible , one should be able to solve for a the equation
0 f (a;1,p;0)
oa
warrant the solution a =a, +& g(t;p;e) for some value a, of a. Conditionally periodic

solutions may also be established, depending on special conditions. It has been assumed (Eg.
3.2) that all eigenvalues p; (j =1,2,3,4) arerationa or closeto rational numbers, in the sense

of ¢ small. Thisis not the case for general values of the massratio p. In fact one can choose p
so that A ,A,(=-A,) arerational but not A,,A, (=-A,), or vice-versa. This choice defines

linear approximations (for € = 0) which are short or long periodic, if one excludes the other
pair of roots by proper choice of the initial conditions. Under these circumstances, it is possible
to produce periodic solutions emanating from the short or long periodic approximations, for
€ #0. The above method of successive approximations applies equally well with a proper
change in the choice of the initial vector a and matrix B. Let us consider the case when
A, A5 (=-A,) arerational butnot A,,A, (=-A,). Thatis, more precisely,

f(a;1;p;€)=0, so that it is necessary that the Jacobian

0;szsoasto

a=a

p;(0) = A; =ik;/m, (j =13 (3.20)
and



p;(0) = A; #ip/mm, (j=24p=0£1%2.) (3.21)
It follows that
p; =ik;/m; +0O(e) (j =13 (3.22)

and the inequalities (3.21) hold for p; (g), j=2,4, for |¢| sufficiently small. Matrix B is
now chosen as B =diag(it,,p,,it,,p,) and theinitial vector a asa =(a,,0,a,,0). The
period of the solution will be P'=2mmm, while the averaging operation M has to be
interpreted, when applied to the vectorsinvolved, as Mf = (Mf,, 0, Mf,, 0). It follows that in
Eq. 3.18, function f is actually two-dimensional, i.e. f =(f,0, f,,0) and there are only two
equations to be satisfied, f,(a;T;p;e)=0and f,(a;t;p;e)=0. Whilein the case where all
A'sarerationa the solution has the form

y,=a,e'" "+ep (t,ae) [j=12,34 (3.23)
in the conditionally periodic case considered one has
y =ae" +ep(tag) =13, y =g (tag) k=24 (3.24)

asit is easily seen from Eq. 3.17. It is important to take into account the symmetric properties
of the system. Up to now we have made no explicit use of the fact that z, =2 and z, =2z,.
These relations introduce important simplifications in the actual method of computation. In
fact, considering the components of Eq. 3.16, it is obvious that only two such components will
need to be computed at every stage, namely, y, and y, , while y, and y, are readily
computed as y, =y, and y, =Yy, . For anadlogous reasons, the four scalar conditions
corresponding  to f(a;t;p;e)=0 will reduce to only two since, necessarily,
1,=-1,,7,=-1,,P; =P,, P, =P, . Also, since the solution has to be valid for any
e,|e|<eg, ,itfollowsthat o, =ia, 1, and o, =ia ,T,.

For the actual development of the solution we consider the reduced system given in Eg. 3.6,
where

eV=e®cUe® =e® (¢d+A-B)e®

EVjy = Z(e‘Bt)jl(g(D+A— B)jn(eBt)nk =

(3.25)
= e(rk_ri)t(fq)jk + A By = e(rk_ri)t[gq)jk +(p; _Tj)djk]
The successive approximations are given by
u® =a,,u™ =a, +£J’(I —M)Zvjkuﬁm‘”dt ,j=1234and m=12,.. (3.26)

Taking into account the expression for V;, given by Eq. 3.25, and considering the definition
of ®;, givenin section 2 of this paper, theresult is



0 cost 0
(m) —
u’ =a. +[(l-M o-——)K .. +&(p, -1, Jdt+
J J I( )EF( 1+£cost) i+, ’)%7’ (3.27)
_cost o
—eS K, [(-M)e™ ™" u{™? ot
Z ] Je 1+ecost
For m=1, one has the equation
@ _ U cost
uj —aj+ajJ’(|—M)@:(a 1+scost)K +e(p, -1, )g:lt+
: (3.28)
cost
K. a, [(1=M)em ™t ——_
Z Ik I( ) 1+ ecost

The mean value in the above expression gives

0 cost O
M g(a_lﬂ:cost)K” +e(p, _TJ)%P’J' :[S(U_U)KJJ +e(p, _Tj)]aj =&(p; —1))a,
cost
o that | — -.lo, =g(0 ——)K., . a.. The average vdue of
( [++] ( 1+scost) e o

(' cost (1+¢€ cost) ™ iszero since the exponent isimaginary, i.e.

e
T, =Ty =i(p,/m Y /mj) :i(pkmj ‘p,—mK)t/mkm,— :

Thefirst order solution is therefore given by

u® =a, +£ajKj,-J'(U )t - gZa K i

1+£cost
wheretheintegral |, isgivenby I, :J’e“k_”)t cost (1+ & cost) ‘dt

Making use of theintegral (Grobner, 1966, Integral 332.24)

an cosnxdx _ ., (W1-&%-1)"
J’ =2
0 1+ gcosx e"J1- g2

(1+ecost) *cost =0 —S z oP(v1-€?)""cos pt (3.29)
p=1

, n integer 20, onefindsthe Fourier Series

This seriesis convergent for any value of |e[k 1. On the other end
J’e"t cosptdt =e” (a” + p?) *(acospt + psinpt) (3.30)
and if o isimaginary the averagevalueof e°‘cospt iszero. It followsfor the aboveintegral

| e =0t ~1,)" +
—Zop(\/l g%)P" 1[(T -1, )2 +p ] 1[(Tk —T;)cospt +psn pt] (331)

p>1



Thefinal result is obtained by substituting Eq. 3.31 into the relation
1 _ .
u =a, e K, Zp 'gP(\1-£?)"tsinpt —ZorkKjkljk
p= 7]

so that it isfinaly found that
u? =a +eZ(aﬁ) (t) cospt +b{" (t) sin pt) (3.32)

J
p=0

where the time-dependent coefficients are given by Egs. 3.33 below

y_0 -1
a§0) _;kzakKjk(Tk_Tj) eXp(Tk_Tj)t
]

af =COy aK, @ -1 + P @ - 1) e, - 1)t

K# |

(3.33)
D — ~O 2 2|2 0
bj, =C, 0O orkKjk[(rk -T,)°+p ] pexp(T, —rj)t+ajK”E
#)
cy = —Eap(\/l—ez)p‘l , p=123...
£
The coefficients above are actually better defined when written in the form
aﬁ)) = Z aflo)k eXp(Tk - Tj)t ) a% = Z a%k eXp(Tk - Tj)t
i - (3.34)

j pk

J
o) = 3 B eplr, 1 )b, . P13
!

where the new coefficients are easily defined from Eg. 3.33. The infinite summation for the
index p is necessaty due to our inability to express the integra

i :J’e“k_”)t cost (L+£ cost) “dt in closed form, since the modulus of the exponent is not

an integer, but the difference between two rational numbers. It is seen that the functions uﬁl)
are infinite trigonometric series with arguments (p, /q,)+(p; /q;) £ p where al numbers
involved are integer numbers. The infinite series show the denominators
(T, —1,)*+p* =—~(p /q, =p,; /q;)* +p> which can be zero, and therefore singular,
whenever p, /q, + p;/q; hasapositive or negative integral value. The + sign comes from
thefact that t, = -1, and 1, = -T,. Thishasbeen discussed in section 2 of this paper.
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