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1. INTRODUCTION
 

 Motion in the vicinity of the Earth-Moon system is particularly important for two
reasons: space exploration missions to the Moon and parking orbits in the vicinity of this
system, for observation purposes and space surveillance. The present problem corresponds to
the actual determination of initial conditions leading to periodic solutions in the vicinity of the
equilateral equilibrium points of the above system. The elliptic restricted problem of three
bodies, and the stability properties of the Lagrangian solutions, was studied in details by
Giacaglia and Szebehely (1969). A convergent method of obtaining the characteristic
exponents at L4 and L5, in the elliptic case, was presented by Giacaglia (1971), who also
dedicated several papers to the resonace cases (Giacaglia 1968; Giacaglia, 1969; Giacaglia and
França, 1970; Giacaglia and Nacozy, 1970) The elliptic case has received little attention,
although for large eccentricity of the primaries, should give important informations about the
evolution of bodies gravitating in the field of disrupting binary systems. Recent important work
on the restricted problem, have shown this lack of interest. In a recent paper, Winter and
Murray (1997) have integrated periodic symmetric librations associated with the 1:n
resonances for n = 2,3,4,5. They also discuss the existence and properties of asymmetric
librations for large values of n. Chaotic behavior of resonant orbits about  the triangular
equilibrium points was observed by numerical integration. It may be interesting to see the
influence of the eccentricity of the primaries in such behavior. Laskar and Robutel (1995)
presented the notion that has lately been introduced about the chaotic behavior of the solar
system, established by numerical integration. Their work gives a new way of expanding the
Hamiltonian of the planetary system, putting in evidence the ratios of all the semi-major axis.
The applicability of Arnold and Kolmogorov Theorems is also given attention. In the context
of their work, the important point is the chaotic behavior, although extensive numerical
integrations of the restricted problem by Broucke(1971), Giacaglia and Nacozy (1970),
Giacaglia (1968) and more recently by Ragos et al. (1997), have not demonstrated such
behavior. Robutel (1995) uses a computer algebraic manipulator to expand the Hamiltonian of
the three-body problem and uses the results to demonstrate the existence of quasi-periodic
orbits, as predicted by Arnold Theorem. Boundedness of the librations about the triangular
points is obtained by an analytical procedure which eliminates fast variables by Hagel (1996),
concluding with the comparison and agreement with numerical integration. Chaotic behavior is
not put in evidence, for orbits in the vicinity of the 1:2 resonance. An interesting analysis is



performed by Celletti and Ferrara (1996) showing the stability of  the restricted problem
configuration in the special case Sun-Ceres-Jupiter for a very long time, comparable with the
age of the solar system. Except for a few mass ratios, Ishwar (1997) demonstrates the stability
of L4 even in the case of a small oblateness of one of the primaries and of the infinitesimal
body. Again, it might be of interest to examine the influence of the eccentricity of the primaries
in the above results. Similar studies have been carried out by Subba Rao and Sharma (1997).
Thakur ans Singh (1997) analyze a different generalization of the restricted problem,
introducing radiation of one of the primaries and oblateness of the other. They analyze the
stability of the triangular points in the presence of resonances 1:2 and 1:3. Instability is shown
in the 1:2 case, while in the 1:3 case it depends on the radiation and oblateness parameters.
Nothing is mentioned about the influence of eccentricity. If the eccentricity should change due
to presence of radiation, oblateness, tides and other forces, over a long period the influence on
stability may prove to be quite important. An extreme case of eccentricity is considered by
Broucke (1971) and Martinez Alfaro and Orellana (1997).
 

2. EQUATIONS OF THE PROBLEM

For the problem of the motion of an infinitesimal body in the gravitational field of two large
masses in relative keplerian elliptic motion, a method for the determination of characteristic
exponents has been proposed by this author (Giacaglia, 1971). Periodic oscillations about the
triangular equilibrium points may also be developed by this method. In the paper referred
above, it has been shown that the equations of motion in the vicinity of the Lagrangean points
L4 and L5, in the elliptic restricted problem of three bodies, may be written as

�z A z z= + ε Φ            (2.1)
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Defining  4/3=α , ( ) 4/1233 −= µβ  and 4/9=γ , the original equations for the linearized
problem are

( )ηβξαηξ +=− F´ 2´´                       (2.2)

( )ηγξβξη +=− F´ 2´´

With the new variables ξζ =1 , ηζ =2 , 3´ ζξ = , 3´ ζξ = , 3´ ζη = , system (2.2) takes the form

ζεζζ **A´ Φ+=                       (2.3)
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The characteristic roots of A* are ( ) 2/S131 +−=−= λλ , ( ) 2/S142 −−=−= λλ , with

( )µµ -127-1S = . They are pure imaginary if ( ) 1127 ≤−µµ  i.e. �03852,00 =≤ µµ . 
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The final form of the equations is given by Eq (2.1) above, with associated definitions. With

the proposed method, to any order of approximation, one gets divisors ( ) 22
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In the interval ],0[ 0µ , parametric instability occurs only at 0286,0* =µ , a value not

corresponding to the earth-moon system, where µ = 0.0123.

3. CONSTRUCTION OF PERIODIC SOLUTIONS

It is proposed here to construct periodic solutions of Eq. (2.1) by a convergent method
of approximation. This method produces a contraction mapping in the Banach space of all
periodic functions with minimum period P'.  If such periodic solution exists, one may expect its
period to be P' = mP, m ≠ 0, integer, positive. Consider Eq.(2.1) written in the form

�z B z U z= + ε            (3.1)

where    ε εU A B= + −Φ  and B diag i i i n= ( , ,..., )τ τ τ1 2 . One has to assume that

 ρ τ ε ρ ε τj j j j j ji O k m= + = =( ) ( ), /              (3.2)

where k mj j,   are integers, relative primes,  m m kj j j> = =0 1 0or and , with

P mP m m m m m' ,= = 1 2 3 4 .
Successive approximations will produce a periodic solution of a system

� ( ; ; ; )y By Uy e fB t= + −ε ε α τ ρ ε            (3.3)

where  f f f f f= ( , , , )1 2 3 4 ,  α α α α α= ( , , , )1 2 3 4  is a constant vector,τ τ τ τ τ= ( , , , )1 2 3 4  and
ρ ρ ρ ρ ρ= ( , , , )1 2 3 4 . Such solution is a periodic solution of Eq.(2.1) if it is possible to choose α
and/or ρ such that

f j ( ; ; ; )α τ ρ ε = 0            (3.4)

can be satisfied for j=1, 2, 3, 4.  Vector  f ( ; ; ; )α τ ρ ε  is obtained by an averaging process
necessary to avoid secular terms in the method of successive approximations. The linear non
singular transformation

z e uB t=            (3.5)

reduces system (3.1) to

�u Vu= ε            (3.6)

where

V e U e V tB t B t= =− ( , )ε            (3.7)

Obviously, since τ j   are rational numbers, matrix V is periodic with period  P m m m m'= 2 1 2 3 4π .

In this case, or for any function F t F t P( ) ( ' )= + , integrable in (0,P'), it follows that
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           (3.8)

which is the constant term of Fourier series for F(t). For the integral of a function G(t) such
that G t( ) = 0, we shall indicate the unique primitive function

H t G t dt( ) ( )= ∫            (3.9)



such that MtH(t)=0, which is periodic of period P' and absolutely continuous, provided G(t) is
at least L-integrable in (0,P'). It can be shown (Cesari, 1963),  under these circumstances, that
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P
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P
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for some constant K independent of G(t). It is also verified that MF t F t( ) max ( ( )≤  and
( ) ( ) ( ) ( ) max ( )I M F t F t MF t F t− ≡ − ≤2 . These properties are necessary to show the
convergence of the method to be used (Cesari, 1963, p. 125). We shall be using M in place of
Mt with no danger of misunderstanding. The method of successive approximations is as
follows. Consider Eq.(3.6) and define the following approximations

u u u I M V t u t dtm m( ) ( ) ( ) ( ), ( ) ( , ) ( )0 0 1= = + − −∫α ε ε          (3.11)

for m=1,2,3,.... It can be shown (Hale, 1963) that if α < < <r r R, 0 , there exists an

ε ε ε1 1 00, < <  , such that for all ε ε< 1  , functions u tm( ) ( )  are periodic with period P', mean

value  Mu m( ) = α  and  u Rm( ) .≤  Also,  u tm( ) ( )   converges uniformly in 0, 'P mas →∞
to an absolutely continuous function u(t) which is periodic with period P',
Mu t u t R u t( ) , ( ) ( )= ≤α and  satisfies the integral equation

u I M V t u t dt= + −∫α ε ε( ) ( , ) ( )          (3.12)

and, therefore, the differential equation

� ( , ) ( , ) ( ) ( , ) ( ; ; ; )u V t u M V t u t V t u f= − = −ε ε ε ε ε ε ε α τ ρ ε          (3.13)

Thus, Eq. (3.12) is a solution (periodic, with period P') of Eq. (3.6)  if and only if

f ( ; ; ; )α τ ρ ε = 0          (3.14)

for some vectors α and/or τ. The convergence of the process is established as follows.
Consider Eq.(3.6) and suppose that the conditions

)()()()()()(,)()( tvtuLtvtVtutVLtutV −≤−≤  are satisfied for all

t u t and v t R, , ( ) ( )ε ε≤ ≤0 . Consider the sequence defined by Eq.(12), given
R L r R r, , ,ε α0 0and if < < ≤ . If S is the space of all vector periodic functions g(t)

with period T=2π / ω,  continuous in ( , )−∞ +∞  with norm given by Ng g t= max ( )   for all t,

consider the operator    Og I M V g d= + −∫α ε τ τ τ( ) ( ) ( )  and let S* be the set of all  g(t) ∈  S

defined by S* = {g ∈  S,  Mg = α, N g ≤  R}. Then one has the mapping  O:S* ⇒   S.  The
following conditions are also satisfied
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so that one has N Og r R r R( ) ( )≤ + − =   for  { }ε ε ε≤ = −1 0 2min , ( ) /R r KL . Also,

M Og O S S g h S( ) , : * * . , *= ⇒ ≤ ∈α ε εso that for Given1 , it follows that

N Og Oh KLN g h N g h( ) ( ) ( ) /− ≤ − ≤ −2 2ε , for { }ε ε ε≤ =2 1 1 4min KL, / . Therefore

O:S*⇒  S*  is a contraction mapping. Space S* is obviously complete, so that by Banach's
fixed point theorem (Hale, 1963, p. 108), there is a unique element of S*, say y(t)∈  S*, such



that  Oy=y and N y ym( )( ) − → 0 as m→∞.  Also Oy=y implies that

y t I M V y d( ) ( ) ( ) ( )= + −∫α ε τ τ τ  so that y(t) is absolutely continuous and

� , ( )y Vy D D M Vy= + =ε ε . The solution of the original system is established  by using the
inverse transformation

u e yB t= −          (3.15)

The successive approximations for system (3.3) are given by  y e B t( )0 = α  and , in general,
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The method converges to a function y(t) satisfying the integral equation

[ ]y t e I M e A B y dB t B t( ) ( ) ( , ) ( )( )= + − + −−∫α ε τ ε τ ττ Φ          (3.17)

or the differential equation
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which is Eq.(3.3), with the definition
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For the solution to be possible , one should be able to solve for α the equation

f ( ; ; ; )α τ ρ ε = 0, so that  it is necessary that the Jacobian   
∂ α τ ρ

∂ α α α
f ( ; ; ; )0

0
0= ≠  so as to

warrant  the solution α α ε τ ρ ε= +0 g ( ; ; )  for some value α 0  of α. Conditionally periodic
solutions may also be established, depending on special conditions. It has been assumed (Eq.
3.2) that all eigenvalues ρ j j( , , , )= 1 2 3 4  are rational or close to rational numbers, in the sense

of  ε  small. This is not the case for general values of the mass ratio µ. In fact one can choose µ
so that λ λ λ1 3 1, ( )= −  are rational but not λ λ λ2 4 2, ( )= − , or vice-versa. This choice defines
linear approximations (for ε = 0) which are short or long periodic, if one excludes the other
pair of roots by proper choice of the initial conditions. Under these circumstances, it is possible
to produce periodic solutions emanating from the short or long periodic approximations, for
ε ≠ 0. The above method of successive approximations applies equally well with a proper
change in the choice of the initial vector α and matrix B. Let us consider the case when
λ λ λ1 3 1, ( )= −  are rational but not λ λ λ2 4 2, ( )= − . That is, more precisely,

)3,1(/)0( === jmik jjjj λρ          (3.20)

and



...),2,1,0;4,2(/)0( 21 ±±==≠= pjmmipjj λρ          (3.21)

It follows that

)3,1()(/ =+= jOmik jjj ερ          (3.22)

and the inequalities (3.21) hold for ρ ε εj j( ), , ,= 2 4 for   sufficiently small.  Matrix B is

now chosen as  B diag i i= ( , , , )τ ρ τ ρ1 2 3 4   and the initial vector α as α α α= ( , , , )1 30 0 . The
period of the solution will be P m m'= 2 1 3π   while the averaging operation M has to be
interpreted, when applied to the vectors involved, as Mf Mf Mf= ( , , , )1 30 0 . It follows that in
Eq. 3.18, function f is actually two-dimensional, i.e. f f f= ( , , , )1 30 0  and there are only two
equations to be satisfied, f1 0( ; ; ; )α τ ρ ε =  and f 2 0( ; ; ; )α τ ρ ε = .  While in the case where all
λ 's are rational the solution has the form

y e t jj j
i t
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in the conditionally periodic case considered one has
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as it is easily seen from Eq. 3.17. It is important to take into account the symmetric properties
of the system. Up to now we have made no explicit use of the fact that z z z z3 1 4 2= =� �and .
These relations introduce important simplifications in the actual method of computation. In
fact, considering the components of  Eq. 3.16, it is obvious that only two such components will
need to be computed at every stage, namely, y y1 2and  , while y y3 4and   are readily
computed as y y y y3 1 4 2= =� �and  . For analogous reasons, the four scalar conditions
corresponding  to  f ( ; ; ; )α τ ρ ε = 0 will reduce to only two since, necessarily,
τ τ τ τ ρ ρ ρ ρ3 1 4 2 3 1 4 2= − = − = − = −, , ,  . Also, since the solution has to be valid for any
ε ε ε, ≤ 1  , it follows that α α τ α α τ3 1 1 4 2 2= =i iand  .
For the actual development of the solution we consider the reduced system given in Eq. 3.6,
where
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The successive approximations are given by
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Taking into account the expression for V j k   given by Eq. 3.25, and considering the definition

of Φ j k  given in section 2 of this paper, the result is
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For m=1, one has the equation
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The mean value in the above expression gives
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This series is convergent for any value of |ε < 1.  On the other end
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and if α  is imaginary  the average value of  e pttα cos   is zero. It follows for the above integral
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The final result is obtained by substituting Eq. 3.31 into the relation
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where the time-dependent coefficients are given by Eqs. 3.33 below
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The coefficients above are actually better defined when written in the form

...,3,2,1,)exp(
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where the new coefficients are easily defined from Eq. 3.33. The infinite summation for the
index p is necessary due to our inability to express the integral

∫ −− += dttteI
t

kj
jk 1)( )cos1(cos εττ   in closed form, since the modulus of the exponent is not

an integer, but the difference between two rational numbers. It is seen that the functions u j
( )1

are infinite trigonometric series with arguments  ( / ) ( / )p q p q pk k j j± ±   where all numbers

involved are integer numbers. The infinite series show the denominators
( ) ( / / )τ τk j k k j jp p q p q p− + = − ± +2 2 2 2   which can be zero, and therefore singular,

whenever   p q p qk k j j/ /±    has a positive or negative integral value. The ±  sign comes from

the fact that τ τ τ τ1 3 2 4= − = −and . This has been discussed in section 2 of this paper.

REFERENCES

Broucke, R., 1971, “Periodic Orbits in the Rectilinear Restricted Three-Body Problem”, J.
      Mecanique, 10, 449-465
Celletti, A. and Ferrara, L.,1996, “An Application of the Nekhoroshev Theorem to the
      Restricted Three-Body Problem”, Cel. Mech., 64, 261-272
Cesari, L., 1963, Asymptotic Behavior and Stability Problems in Ordinary Differential
      Equations,  Second Edition, Academic Press, New York



Giacaglia, G.E.O. and França, L.N.F., 1970,  “Motion in the neighborhood of L1 of the Sun
      Perturbed Earth-Moon System”, in “Periodic Orbits, Stability and Resonances” (Giacaglia,
      G.E.O. Ed.), D. Reidel Pub. Co., Dordrecht
Giacaglia, G.E.O. and Nacozy, P., 1970, “Resonances in Restricted Problem of Three Bodies”,
      in “Periodic Orbits, Stability and Resonances” (Giacaglia, G.E.O. Ed.), D. Reidel Pub. Co.,
      Dordrecht
Giacaglia, G.E.O. and Szebehely, V.G., 1969, “On the Elliptic Restricted Problem of Three
      Bodies”, Astron. J., 74, 230-235
Giacaglia, G.E.O., 1968, “Secular Motion of Resonant Asteroids”, 1968, Smith. Astroph.
      Observ., Special Report 278, Cambridge
Giacaglia, G.E.O., 1969, “Parametric Representation of Resonance in the Restricted Problem”,
      Mem. Soc. Astron. Italia., XL, 499-515
Giacaglia, G.E.O., 1971, “Characteristic Exponents at L4 and L5 in the Elliptic Restricted
      Problem of Three Bodies”, Cel. Mech., 4, 66-68
Giacaglia, G.E.O., 1971, “Stability and Periodic Librations in the Elliptic Restricted Problem”,
      Bull. Amer. Astr. Soc., 3, n.2, part 2, 266-269
Gröbner, W. and Hofreiter, N., 1966, Integraltafel - Zweiter Teil - Bestimmte Integrale,
      Springer - Verlag , Wien
Hagel, J, 1996, “Analytical Investigation of Non-Linear Stabilty of the Lagrangian Point L4

      around the Commensurability 1:2”, Cel. Mech., 63, 205-225
Hale, J.K., 1963, Oscillations in Non Linear Systems, McGraw-Hill, New York
Ishwar, B, 1997, “Non-Linear Stability in the Generalized Restricted Three-Body Problem”,
      Cel. Mech., 65, 253-289
Laskar, J. and Robutel, P, 1995, “Stability of the Planetary Three-Body Problem. II. KAM
      Theory and Existence of Quasiperiodic Motions”, Cel. Mech., 62, 219-261
Martinez Alfaro, J. and Orellana, R.B., 1997, “Orbits Structures in the Isosceles Rectilinear
      Restricted Three-Body Problem”, Cel. Mech. 1997, 275-291
Ragos, O. et al., 1997, “Stability Regions and Quasi-Periodic Motions in the Vicinity of
      Triangular Equilibrium Points”, Cel. Mech., 67, 251-274
Subba Rao, P.V. and Sharma, R.K., 1997, “Effect of Oblateness on the Non-Linear Stability of
      L4 in the Restricted Three-Body Problem”, Cel. Mech. 65, 291-312
Thakur, A.P. and Singh, R.B., 1997, “Stability of the Triangular Libration Points of the
      Circular Restricted Problem in the Presence of Resonances”,Cel. Mech., 66, 1191-202
Winter, O.C. and Murray, C.D., 1997, “Resonance and Chaos II. Exterior Resonances and
      Asymmetric Libration”, Astron. Astrophys., 328, 399-408


